6.6k views
5 votes
Given z1 = -3


√(3)
 + 3i and z2 = 6cos150° + 6isin150°, use complete sentences to explain why z1 = z2. Explain the steps of your work for full credit.




1 Answer

4 votes

Answer:

See explanation

Explanation:

The given complex number are:


z_1=-3√(3)+3i

and


z_2=6\cos 150\degree+6i\sin 150\degree

When we rewrite
z_1=-3√(3)+3i in complex form, we obtain;


z_1=r(\cos \theta+i\sin \theta)

where


r=\sqrt{(-3√(3))^2+3^2 }=√(36)=6

and


\theta=tan^(-1)((y)/(x))


\implies \theta=tan^(-1)((-3√(3))/(3))=150\degree

Hence,


z_1=6(\cos 150\degree+i\sin 150\degree)


z_1=6\cos 150\degree+6i\sin 150\degree

Hence


z_1=z_2

User Donohoe
by
5.2k points