229k views
3 votes
Convert the complex number z = 4 - 10i from rectangular form to polar form.​

User MichaelM
by
8.1k points

1 Answer

3 votes

ANSWER


r = 2 √(29) ( \cos(292 \degree) + \sin(292 \degree))

Step-by-step explanation

The polar form of a complex number ,


z = x + yi

is given by:


z = r( \cos( \theta) + i \sin( \theta) )

where


r = \sqrt{ {x}^(2) + {y}^(2) }

The given complex number is:


z = 4 - 10i


r = \sqrt{ {4}^(2) + {( - 10)}^(2) }


r = √(16 + 100)


r = √(116) = 2 √(29)

And


\theta= \tan^( - 1)(( y)/(x) )


\theta= \tan^( - 1)(( - 10)/(4) )


\theta= 292 \degree

Hence the polar form is :


r = 2 √(29) ( \cos(292 \degree) + \sin(292 \degree))

User Arjen Dijkstra
by
7.9k points