Hello!
The answer is:
The simplified expression is:
![Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/smnn3nlybxeucnh3a76zvm0o7if8ztyq6w.png)
Why?
To simplify the expression we need to use the following trigonometric identities:
![Sin(-x)=-Sin(x)\\Cos(-x)=Cos(x)\\Csc(-x)=-Csc(x)\\Csc(x)=(1)/(Sin(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wnb8acbyyssawrz8xeo92vwovel0yvoqvf.png)
We are given the expression:
![sin(-x)*cos(-x)*csc(-x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/tlke0ayacc4qc9ha92wkza09yb5x942cut.png)
So, applying the identities and simplifying, we have:
![Sin(-x)*Cos(-x)*Csc(-x)=-Sin(x)*Cos(x)*-(1)/(Sin(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pkqpoxer5cm7uu2clf8t0xhvt8wek2lyh7.png)
![Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)*-Sin(x)*-(1)/(Sin(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3uo2w32eadqiki931lod5k7j1089b5xnf7.png)
![Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/smnn3nlybxeucnh3a76zvm0o7if8ztyq6w.png)
Hence, the simplified expression is:
![Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/smnn3nlybxeucnh3a76zvm0o7if8ztyq6w.png)
Have a nice day!