Answer:
V=167.5 cubic mm
Explanation:
Volume of the Cone is given with the formula
![V=(1)/(3) \pi r^2h](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3dmwngrfqbqn7gub4i9w9ava5y2qvgfuw5.png)
though we are not specified what is radius and which one is the height , we are assuming that ,
Height = 10 mm
Radius = 4 mm
Substituting these values in the formula we get
![V=(1)/(3) \pi 4^2 * 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9blb5jqf5s6kiqw3hde410gi9dsj0ffoka.png)
![V=(1)/(3) \pi 160](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rflsecy1wob6cf43zvimoqfym54pt5si68.png)
![V=(160 * 3.14)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7eylj0qjwj2gr2xo8vah6jea9ltent5p5p.png)
![V=(160 * 3.14)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7eylj0qjwj2gr2xo8vah6jea9ltent5p5p.png)
![V=(502.40)/(3)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y3wdymyvl57gg08dzhif9sctapodlids79.png)
![V=167.5](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wkcudaglzloiwcxqw00l9cremvjo0wvlez.png)