Answer:
B) (21, -14) and (21, -22)
Explanation:
Given,
The area of the square = 64 square unit,
Let x be the side of the square,
![\implies x^2 = 64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/11ro884is2yxl5rrpguk2q4z85vqp0akn2.png)
![\implies x = 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jgzpzqtsmaubwqraoye574kshejuzicau9.png)
Hence, the side of the square = 8 unit,
⇒ The distance between the adjacent vertices in the square = 8 units,
By the distance formula,
The distance between (3, -35) and (3, -28) is,
![\sqrt{(3-3)^2+(-28-(-35))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gc2t10wfk1gaag495t8dzfto5gaot39v6s.png)
![=√(0+(-28+35)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/65se8eiu2rf4a6zvkhzqk89q5cyvyfpuo3.png)
![=√(7^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d561x4ayep2kvbyzw7nd718azmv6nd0xp2.png)
![=7\\eq 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gpmjo5v4sllbifv56ar59qdkignbzziozp.png)
Thus, (3, -35) and (3, -28) can not be the vertices of the square.
The distance between (21, -14) and (21, -22) is,
![\sqrt{(21-21)^2+(-22-(-14))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wljxoeni24sboo8q9ircv021bobhadpvl8.png)
![=√(0+(-22+14)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5jw4at4yo51w77h809hk8n0j4la9ss2zmj.png)
![=√(8^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yy69obh88lhuur22gpih85mej0is2221i7.png)
![=8](https://img.qammunity.org/2020/formulas/mathematics/high-school/fixgw6mqyiknpyk1k50d58tc5cqd0i9rvk.png)
Thus, (21, -14) and (21, -22) are the vertices of the square.
The distance between (32, -42) and (32, -7) is,
![\sqrt{(32-32)^2+(-7-(-42))^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2d2nopr3tsbsw1cuqhsjnyqpud0tyn20r0.png)
![=√(0+(-7+42)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ckjxbiocy898zip1wvfpipxtkjiu48qxqy.png)
![=√(35^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i7j18x5coeumgpny7tgz5tvgs5rvy8exsd.png)
![=35\\eq 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/i802o2tdn8o68qqgkcxgmwr095fw2mcbli.png)
Thus, (32, -42) and (32, -7) can not be the vertices of the square.
The distance between (74, 19) and (82, 27) is,
![\sqrt{(82-74)^2+(27-19)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bq0lhdlk8z82sjzb008npef47yo5zm84bn.png)
![=√(8^2+8^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gruvn6qxmonuz5khxx5ws69erg6ryrp1rq.png)
![=√(64+64)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/aqdo3tudh1ynuuwfrjfslb3l6ykzilh7g4.png)
![=√(128)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/x22glu8ggjln80pe7rduvi3cw29sw9ag9a.png)
![=8√(2)\\eq 8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fv4sif76svs29ve1map2nuztuk5exnop42.png)
Thus, (74, 19) and (82, 27) can not be the vertices of the square.