3.4k views
1 vote
Calculate the energy of a photon having a wavelength in thefollowing ranges.(a) microwave, with λ = 50.00 cmeV(b) visible, with λ = 500 nmeV(c) x-ray, with λ = 0.50 nmeV

1 Answer

3 votes

(a)
2.5\cdot 10^(-6)eV

The energy of a photon is given by:


E=(hc)/(\lambda)

where


h=6.63\cdot 10^(-34)Js is the Planck constant


c=3\cdot 10^8 m/s is the speed of light


\lambda is the wavelength

For the microwave photon,


\lambda=50.00 cm = 0.50 m

So the energy is


E=((6.63\cdot 10^(-34)Js)(3\cdot 10^8 m/s))/(0.50 m)=4.0\cdot 10^(-25) J

And converting into electronvolts,


E=(4.0\cdot 10^(-25)J)/(1.6\cdot 10^(-19) J/eV)=2.5\cdot 10^(-6)eV

(b)
2.5 eV

For the energy of the photon, we can use the same formula:


E=(hc)/(\lambda)

For the visible light photon,


\lambda=500 nm = 5 \cdot 10^(-7)m

So the energy is


E=((6.63\cdot 10^(-34)Js)(3\cdot 10^8 m/s))/(5\cdot 10^(-7) m)=4.0\cdot 10^(-19) J

And converting into electronvolts,


E=(4.0\cdot 10^(-19)J)/(1.6\cdot 10^(-19) J/eV)=2.5 eV

(c)
2500 eV

For the energy of the photon, we can use the same formula:


E=(hc)/(\lambda)

For the x-ray photon,


\lambda=0.5 nm = 5 \cdot 10^(-10)m

So the energy is


E=((6.63\cdot 10^(-34)Js)(3\cdot 10^8 m/s))/(5\cdot 10^(-10) m)=4.0\cdot 10^(-16) J

And converting into electronvolts,


E=(4.0\cdot 10^(-16)J)/(1.6\cdot 10^(-19) J/eV)=2500 eV

User Erroric
by
4.7k points