Hello!
The answer is:
The rewritten expression is:
![cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9acmkvmz4dmgrq5yited9936su2kwu040n.png)
Why?
To solve this problem we need to use the trigonometric identity of the double angle for the cosine which states that:
![cos(2\alpha)=cos^(2)(\alpha)-sin^(2)(\alpha)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2tyjpm3xwb4t89aosqpxj2tgssbdblkmxm.png)
Also, if we want to rewrite only with terms of cos(x) and sin(x), we can apply the following property:
![(a^(2) -b^(2))=(a+b)(a-b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qw8hjd1bsgut5m8qjxeiaivozte8z17doa.png)
So, rewriting the trigonometric equation, we have:
![cos^(2)(\alpha)-sin^(2)(\alpha)=(cos(x)+sin(x))*(cos(x)-sin(x))](https://img.qammunity.org/2020/formulas/mathematics/middle-school/gcl580dsbq0ym4tll6hov0jy4it71soih5.png)
Then, we are given the expression:
![cos(2x)+sin(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cj3x1twnilxzwioruoulbi1sv2hz1kz1x8.png)
Now, rewriting the given expression with only sin(x) and cos(x), we have:
![cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9acmkvmz4dmgrq5yited9936su2kwu040n.png)
Hence, the answer is:
![cos(2x)+sin(x)=(cos(x)+sin(x))*(cos(x)-sin(x))+sin(x)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/9acmkvmz4dmgrq5yited9936su2kwu040n.png)
Have a nice day!