195k views
1 vote
Simplify cotø(tanø+cotø)​

User Wigberto
by
8.1k points

1 Answer

4 votes

Answer:


\large\boxed{\cot\theta(\tan\theta+\cot\theta)=1+\cot^2\theta=(1)/(\sin^2\theta)=\csc^2\theta}

Explanation:


\text{Use}\\\\\text{distributive property:}\ a(b+c)=ab+ac\\\cot\alpha\tan\alpha=1.\\\\======================\\\\\cot\theta(\tan\theta+\cot\theta)=(\cot\theta)(\tan\theta)+(\cot\theta)(\cot\theta)\\\\=1+\cot^2\theta\\\\\text{If you want next transformation, then use:}\\\\\cot\alpha=(\cos\alpha)/(\sin\alpha)\\\\\sin^2\alpha+\cos^2\alpha=1\\\\=======================


=1+\left((\cos\theta)/(\sin\theta)\right)^2=1+(\cos^2\theta)/(\sin^2\theta)=(\sin^2\theta)/(\sin^2\theta)+(\cos^2\theta)/(\sin^2\theta)=(\sin^2\theta+\cos^2\theta)/(\sin^2\theta)\\\\=(1)/(\sin^2\theta)\\\\\text{If you want next transformation, then use:}\\\\\csc\alpha=(1)/(\sin\alpha)\\\\=\left((1)/(\sin\theta)\right)^2=(\csc\theta)^2=\csc^2\theta

User Sarah Cartenz
by
7.9k points

Related questions

asked May 21, 2023 201k views
Feras Odeh asked May 21, 2023
by Feras Odeh
8.5k points
1 answer
8 votes
201k views
asked Jan 9, 2023 181k views
Avian asked Jan 9, 2023
by Avian
7.2k points
1 answer
7 votes
181k views
asked Mar 11, 2019 53.0k views
Yordan Yanakiev asked Mar 11, 2019
by Yordan Yanakiev
8.2k points
1 answer
4 votes
53.0k views