Answer:
The radius of the circles are
and
![8\ m](https://img.qammunity.org/2020/formulas/mathematics/high-school/zietxy8xz8pwsay387xoglscqmmti0ukws.png)
Explanation:
Let
x-----> the radius of larger circle
y----> the radius of smaller circle
we know that
![\pi x^(2) +\pi y^(2)=80\pi](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6izq543ergblcbcelyvbanj52doxepf1dp.png)
-----> equation A
Remember that
-----> equation B
substitute equation B in equation A and solve for y
![(2y)^(2) +y^(2)=80](https://img.qammunity.org/2020/formulas/mathematics/middle-school/un029qvewh81igouw8vxk96vov3bq6r7x7.png)
![4y^(2) +y^(2)=80](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ncnf3jr3adq3gsnrfaje3tmftasqyst82a.png)
![5y^(2)=80](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f4v7b9hxd1y6cnt1z05nopflhye3i2hm9c.png)
![y^(2)=16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zahu26ow9j78p75f3loghsf8ynwnw8e8su.png)
![y=4\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/k1i75df30kqzyybozoz3fviiws24yb4jg6.png)
Find the value of x
![x=2y](https://img.qammunity.org/2020/formulas/mathematics/high-school/r0g65nto9t7i4uk52l4mqnpo11p6y30wul.png)
![x=2(4)=8\ m](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7uino6j5u4t041sut0r4xnhox0p5yasor8.png)
therefore
The radius of the circles are
and
![8\ m](https://img.qammunity.org/2020/formulas/mathematics/high-school/zietxy8xz8pwsay387xoglscqmmti0ukws.png)