Answer:
![x=21\\y=-17\\z=0](https://img.qammunity.org/2020/formulas/mathematics/college/oc8zjdm799piutt833adic5cupnu7p3m1h.png)
Explanation:
Multiply the second equation by -1:
![(-1)5x+6y+5z=3(-1)\\-5x-6y-5z=-3](https://img.qammunity.org/2020/formulas/mathematics/college/d8mt72mek3k1jmpr2z2xm77v4mg9x40bru.png)
Add this equation and the third equation and solve for "z":
![\left \{ {{-5x-6y-5z=-3} \atop {5x+6y+3z=3}} \right.\\.........................\\-2z=0\\z=0](https://img.qammunity.org/2020/formulas/mathematics/college/z9ylndrgqa59zwv69vjr69ynvqa8wthcgm.png)
Substitute
into two original equations:
![2x+2y+6(0)=8](https://img.qammunity.org/2020/formulas/mathematics/college/9reo7ocn77ihazl1eeqz7q8yweb3lthjgq.png)
[Equation A]
[Equation B]
Multiply the Equation A by -3, add both equations and then solve for "x":
![\left \{ {{-6x-6y=-24} \atop {5x+6y=3}} \right.\\.....................\\-x=-21\\x=21](https://img.qammunity.org/2020/formulas/mathematics/college/zn4p21argyzsf63dy3jhsf1aipuqqrd2j8.png)
Substitute
into the Equation A or the Equation B and solve for "y":
![2(21)+2y=8\\\\42+2y=8\\\\2y=8-42\\\\2y=-34\\\\y=(-34)/(2)\\\\y=-17](https://img.qammunity.org/2020/formulas/mathematics/college/42grplrocijv39avckzzynk37sfhd9kd2y.png)