Answer: Two times.
Explanation:
The graph touches the x-axis when the value of "y" is zero.
Then, substitute
into the function:
![0=-3x^2+x+4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/zpa05avep4x0lxeezahhjdmnnj2gxrqzlt.png)
Use the Quadratic formula to solve for "x":
![x=(-b\±√(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/nzmxzqefv733aqje6pzhmymg6dznp7bpm5.png)
You can identify that:
![a=-3\\b=1\\c=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/53m4k6qxxniuxz9hxjapmu78fkv0w98dwp.png)
Then, you can substitute values into the Quadratic formula
, so you get:
![x=(-1\±√(1^2-4(-3)(4)))/(2(-3))\\\\x_1=(4)/(3)\\\\x_2=-1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/dnb9917bzuou0co8930c0oiwpr175lqb4o.png)
Therefore, the graph of this function touches the x-axis two times.