Answer:
i. BC
ii. |AD|=|7-2|=5
Explanation:
ABC has the points A(1, 7), B(-2, 2), and C(4, 2).
We use the distance formula to obtain
![|AC|=√((4-1)^2+(2-7)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/8dn2ekva1azl5b8fxioofqdhgs0h7vk6wu.png)
![|AC|=√(9+25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9nx0slt9w5u0onxqlzisuqksp430vlnj8d.png)
![|AC|=√(34)=5.8](https://img.qammunity.org/2020/formulas/mathematics/high-school/51vve1j95qdkcidd8i839loup3ic38llc0.png)
![|AB|=√((-2-1)^2+(2-7)^2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ml82gyn2bzhe1xfhs3h9ib6gz2smwnk0pt.png)
![|AB|=√(9+25)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ac0teu6vpzzow74xuaehq2ikdq1to4wf9k.png)
![|AB|=√(34)=5.8](https://img.qammunity.org/2020/formulas/mathematics/high-school/bsj44fc14p4spldwhr4qwxgi9can6z2vya.png)
Using the absolute value method
|BC|=|4--2|=6
The longest side is BC
We use the absolute value method to find the length of AD
|AD|=|7-2|=5