Answer:
D) 72
Explanation:
A distance between a center of a circle and other point on the circle is equal to a length of a radius.
The formula of a distance between two points:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jq23b7gn8a5hqb5oj8gmcxlbivj810cso4.png)
We have the center (2, 5) and the point on the circle (5, 2). Substitute:
![r=√((5-2)^2+(2-5)^2)=√(3^2+(-3)^2)=√(9+9)=√(9\cdot2)=\sqrt9\cdot\sqrt2=3\sqrt2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/d3e27igjqna3c663t8u3gqtu8xef6ddoud.png)
The length of the side of the square is equal to twice the length of the radius of the circle inscribed in the square.
Therefore:
a - length of the side of the square
![a=2r\to a=2(3\sqrt2)=6\sqrt2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wkr8q7wp0mwlj8dlqwywg1y7i6obt7wfaw.png)
The formula of an area of a square:
![A=a^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/9hoekchdli3rpcdilamb0qyrgzs0fikr6u.png)
Substitute:
![A=(6\sqrt2)^2\qquad\text{use}\ (ab)^n=a^nb^n\\\\A=6^2(\sqrt2)^2\qquad\text{use}\ (√(a))^2=a\\\\A=(36)(2)=72](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bczxbhxruvebeo59l53ti4ro7znxmis1b6.png)