Answer:
Center: (-5,10)
Radius: 2
Explanation:
The equation of the circle in center-radius form is:
![(x-h)^2+(y-k)^2=r^2](https://img.qammunity.org/2020/formulas/mathematics/high-school/kmmm139x85fjht54s8zz0668styzp2e6cm.png)
Where the point (h,k) is the center of the circle and "r" is the radius.
Subtract 121 from both sides of the equation:
![x^2+y^2+121-20y-121=-10x-121\\x^2+y^2-20y=-10x-121](https://img.qammunity.org/2020/formulas/mathematics/college/ha6hfxpcp6lrqmlf3vq3fw5j4ceivvmhmw.png)
Add 10x to both sides:
![x^2+y^2-20y+10x=-10x-121+10x\\x^2+y^2-20y+10x=-121](https://img.qammunity.org/2020/formulas/mathematics/college/1ro58jf011s1ghjezmjp0chkwakh9ia8yv.png)
Make two groups for variable "x" and variable "y":
![(x^2+10x)+(y^2-20y)=-121](https://img.qammunity.org/2020/formulas/mathematics/college/d22j050gwxhepoffsthi8wtte7r24tqaus.png)
Complete the square:
Add
inside the parentheses of "x".
Add
inside the parentheses of "y".
Add
and
to the right side of the equation.
Then:
![(x^2+10x+5^2)+(y^2-20y+10^2)=-121+5^2+10^2\\(x^2+10x+5^2)+(y^2-20y+10^2)=4](https://img.qammunity.org/2020/formulas/mathematics/college/clrxmmggqcquohi1x0bwssjwz10emgv5id.png)
Rewriting, you get that the equation of the circle in center-radius form is:
![(x+5)^2+(y-10)^2=2^2](https://img.qammunity.org/2020/formulas/mathematics/college/1hsz63cl140bzki9zidd8zltxez2d8au0k.png)
You can observe that the radius of the circle is:
![r=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/r8qun0itbnbnff0858kdj8m3grbulx80ie.png)
And the center is:
![(h,k)=(-5,10)](https://img.qammunity.org/2020/formulas/mathematics/college/4d1dxtmfxzvsm1f94ob5mx8z69q1a4ndsz.png)