For this case, we must simplify the following expression:
![\sqrt [3] {\frac {4x} {5}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8gopi35ktf4hcfzq26m0impf73z1bf4r85.png)
For this, we follow the steps below:
We rewrite the expression as:
![\frac {\sqrt [3] {4x}} {\sqrt [3] {5}}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pczivf5gq8dqenbieem0sv5993xnjbbr5p.png)
We multiply by:
![\frac {(\sqrt [3] {5}) ^ 2} {(\sqrt [3] {5}) ^ 2}\\\frac {\sqrt [3] {4x}} {\sqrt [3] {5}} * \frac {(\sqrt [3] {5}) ^ 2} {(\sqrt [3] {5}) ^ 2} =](https://img.qammunity.org/2020/formulas/mathematics/middle-school/amu6oh36fkhrl6ogq93ozkxg9m6atiq6oe.png)
We have by definition of multiplication of powers of equal base that:
![a ^ m * a ^ n = a ^ {m + n}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7yw5wefad8sdvjc8c09sjsmpitlu8phc2m.png)
So:
![\\\frac {\sqrt [3] {4x} * (\sqrt [3] {5}) ^ 2} {\sqrt [3] {5}) ^ 3} =\\\frac {\sqrt [3] {4x} * (\sqrt [3] {5}) ^ 2} {5} =](https://img.qammunity.org/2020/formulas/mathematics/middle-school/rafed1av0wen7qz5puyr7i29239jhbbl0g.png)
We know that:
![(\sqrt [3] {5}) ^ 2 = \sqrt [3] {5 ^ 2}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z6ag1jn2qti6sdh894k4flchuz7n5etbd2.png)
So, we have:
![\frac {\sqrt [3] {4x} * \sqrt [3] {5 ^ 2}} {5} =\\\frac {\sqrt [3] {4x} * \sqrt [3] {25}} {5} =\\\frac {\sqrt [3] {100x}} {5}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/a7cq8ha1xn703nsj9r04678jk5ce9izfjv.png)
Answer:
Option c