98.0k views
4 votes
Given the polynomial 6x3 + 4x2 − 6x − 4, what is the value of the constant 'k' in the factored form?

6x3 + 4x2 − 6x − 4 = 2(x + k)(x − k)(3x + 2)

k= ____________

2 Answers

4 votes

Answer:

k=1

Explanation:

User Kikelomo
by
4.5k points
6 votes

Answer:

k=1

Explanation:

6x³ + 4x² − 6x − 4 = 2(x + k)(x − k)(3x + 2)

In 6x³ + 4x² − 6x − 4 we have common factor 2.

So,

6x³ + 4x² − 6x − 4 = 2(3x³+2x²-3x-2)

(3x³+2x²-3x-2)=(x + k)(x − k)(3x + 2)

(x + k)(x − k) = (3x³+2x²-3x-2)/(3x+2)

(x + k)(x − k) = x²-1

(x + k)(x − k) =(x+1)(x-1)

So, k=1

User Carlos Cordoba
by
5.7k points