181k views
2 votes
Hey help me on this??

Hey help me on this??-example-1
User Yasmina
by
9.1k points

2 Answers

3 votes

Answer:

The answer is C

Explanation:

Use such properties of logarithms:

\log_w\dfrac{a}{b}=\log_wa-\log_wb,\\ \\\log_wa^b=b\log_wa

Thus,

\log_w\dfrac{(x^2-6)^4}{\sqrt[3]{x^2+8} }=\text{use the first property}=\\ \\=\log_w(x^2-6)^4-\log_w\sqrt[3]{x^2+8}=\\ \\=\log_w(x^2-6)^4-\log_w(x^2+8)^{\frac{1}{3}}=\text{use the second property}=\\ \\=4\log(x^2-6)-\dfrac{1}{3}\log_w(x^2+8).

User Glendy
by
7.9k points
4 votes

Answer:

C

Explanation:

Use such properties of logarithms:


\log_w(a)/(b)=\log_wa-\log_wb,\\ \\\log_wa^b=b\log_wa

Thus,


\log_w\frac{(x^2-6)^4}{\sqrt[3]{x^2+8} }=\text{use the first property}=\\ \\=\log_w(x^2-6)^4-\log_w\sqrt[3]{x^2+8}=\\ \\=\log_w(x^2-6)^4-\log_w(x^2+8)^{(1)/(3)}=\text{use the second property}=\\ \\=4\log(x^2-6)-(1)/(3)\log_w(x^2+8).

User Iomartin
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories