489,163 views
37 votes
37 votes
Trigonometry Question:
Find all solutions on the interval [0,2π)
12sin^2(x)+cos(x)-6=0

Trigonometry Question: Find all solutions on the interval [0,2π) 12sin^2(x)+cos(x-example-1
User Noro
by
2.4k points

1 Answer

22 votes
22 votes

Recall the Pythagorean identity,


\sin^2(x) + \cos^2(x) = 1

Use it to rewrite the equation in terms of cos only.


12 (1 - \cos^2(x)) + \cos(x) - 6 = 0


-12 \cos^2(x) + \cos(x) + 6 = 0

Factorize the left side.


-(3\cos(x) + 2) (4\cos(x) - 3) = 0

Solve the two cases for
\cos(x).


3 \cos(x) + 2 = 0 \text{ or } 4\cos(x) - 3 = 0


\cos(x) = -\frac23 \text{ or } \cos(x) = \frac34

From the first equation, we get one family of solutions:


\cos(x) = -\frac23


x = \cos^(-1)\left(-\frac23\right) + 2n\pi \text{ or } x = -\cos^(-1)\left(-\frac23\right) + 2n\pi

From the second equation, we get another family:


\cos(x) = \frac34


x = \cos^(-1)\left(\frac34\right) + 2n\pi \text{ or } x = -\cos^(-1)\left(\frac34\right) + 2n\pi

where
n is an integer.

We get solutions in the given domain for


n = 0 \implies \boxed{x = \cos^(-1)\left(-\frac23\right)} \text{ or } \boxed{x = \cos^(-1)\left(\frac34\right)}


n=1 \implies \boxed{x = 2\pi - \cos^(-1)\left(-\frac23\right)} \text{ or } \boxed{x = 2\pi - \cos^(-1)\left(\frac34\right)}

User Martin Berends
by
3.0k points