193k views
2 votes
What is the range of f(x) = -2*0.5^x?

What is the range of f(x) = -2*0.5^x?-example-1

2 Answers

2 votes

Answer:y<0

Explanation:

User Jens Pettersson
by
8.2k points
4 votes

Answer:

The range is

B.
y\:<\:0

Explanation:

The given function is


f(x)=-2(0.5)^x

Let
y=-2(0.5)^x

The range refers to y-values for which x is defined.

We solve for x to get;


-(y)/(2) =0.5^x


\log(-(y)/(2)) =\log(0.5)^x


\log(-(y)/(2)) =x\log(0.5)


x=(\log(-(y)/(2)) )/(\log(0.5))

x is defined for;


-(y)/(2)\:>\:0

Multiply by -2 and reverse the inequality sign.


\implies y\:<\:0

User Cmbarbu
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories