207k views
0 votes
Match each equation with its solution set.

Match each equation with its solution set.-example-1

1 Answer

4 votes

Answer:

Part 1)
a^(2) -9a+14=0 -----> solution set {7,2}

Part 2)
a^(2) +9a+14=0 -----> solution set {-2,-7}

Part 3)
a^(2) +3a-10=0 -----> solution set {2,-5}

Part 4)
a^(2) +5a-14=0 ----> solution set {2,-7}

Part 5)
a^(2) -5a-14=0 ----> solution set {-2,7}

Explanation:

we know that

The formula to solve a quadratic equation of the form


ax^(2) +bx+c=0

is equal to


x=\frac{-b(+/-)\sqrt{b^(2)-4ac}} {2a}

Part 1)

in this problem we have


a^(2) -9a+14=0

so


a=1\\b=-9\\c=14

substitute in the formula


a=\frac{9(+/-)\sqrt{-9^(2)-4(1)(14)}} {2(1)}


a=\frac{9(+/-)√(25)} {2}


a=\frac{9(+/-)5} {2}


a=\frac{9(+)5} {2}=7


a=\frac{9(-)5} {2}=2

The solution set is {7,2}

Part 2)

in this problem we have


a^(2) +9a+14=0

so


a=1\\b=9\\c=14

substitute in the formula


a=\frac{-9(+/-)\sqrt{9^(2)-4(1)(14)}} {2(1)}


a=\frac{-9(+/-)√(25)} {2}


a=\frac{-9(+/-)5} {2}


a=\frac{-9(+)5} {2}=-2


a=\frac{-9(-)5} {2}=-7

The solution set is {-2,-7}

Part 3)

in this problem we have


a^(2) +3a-10=0

so


a=1\\b=3\\c=-10

substitute in the formula


a=\frac{-3(+/-)\sqrt{3^(2)-4(1)(-10)}} {2(1)}


a=\frac{-3(+/-)√(49)} {2}


a=\frac{-3(+/-)7} {2}


a=\frac{-3(+)7} {2}=2


a=\frac{-3(-)7} {2}=-5

The solution set is {2,-5}

Part 4)

in this problem we have


a^(2) +5a-14=0

so


a=1\\b=5\\c=-14

substitute in the formula


a=\frac{-5(+/-)\sqrt{5^(2)-4(1)(-14)}} {2(1)}


a=\frac{-5(+/-)√(81)} {2}


a=\frac{-5(+/-)9} {2}


a=\frac{-5(+)9} {2}=2


a=\frac{-5(-)9} {2}=-7

The solution set is {2,-7}

Part 5)

in this problem we have


a^(2) -5a-14=0

so


a=1\\b=-5\\c=-14

substitute in the formula


a=\frac{5(+/-)\sqrt{-5^(2)-4(1)(-14)}} {2(1)}


a=\frac{5(+/-)√(81)} {2}


a=\frac{5(+/-)√(81)} {2}


a=\frac{5(+)9} {2}=7


a=\frac{5(-)9} {2}=-2

The solution set is {-2,7}

Match each equation with its solution set.-example-1
User Nick Le Page
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories