Answer:
x = 8.5in, y = 17in, r = 28°, s = 62°
Explanation:
If ΔJNZ and ΔKOA are similar, then corresponding sides are in proportion and corresponding angles are congruent.
We have the proportion:
![(JN)/(KO)=(NZ)/(OA)=(ZJ)/(AK)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/24q41h7o9qb9f50hr3x0pxm45zxlt56tso.png)
and equations:
![m\angle N=m\angle O=90^o\\m\angle Z=m\angle A=28^o\\m\angle J=m\angle K=62^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5ht3nn25e3qz8rct2tmjc6ka3jxqtw25cw.png)
We have:
![JN=8\ in,\ NZ=15\ in,\ KO=4\ in,\ AK=x\ in,\ ZJ=y\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7fe5hkfs5hhekl6swfaoimdnrr410t1y4j.png)
For y we must use the Pythagorean theorem:
![ZJ^2=JN^2+NZ^2\\\\y^2=8^2+15^2\\\\y^2=64+225\\\\y^2=289\to y=√(289)\\\\y=17\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/afuxdrm1zwzl30yase5domk15so9ftzbg3.png)
cross multiply
![8x=(4)(17)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/6c9pkjvlqv83mcuww1rn9w2wlwoo1z063u.png)
divide both sides by 8
![x=8.5\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/p0233uo2znzwmgd3qwixphtbzkkqxrxayz.png)