111k views
2 votes
Solve the system by using a matrix equation

Solve the system by using a matrix equation-example-1
User Harrymc
by
4.7k points

2 Answers

7 votes

Answer:

a. (17,11)

Explanation:

The given system is ;


6x-9y=3


3x-4y=7

The augmented matrices is


\left[\begin{array}{ccc}6&-9&|3\\3&-4&|7\end{array}\right]

Divide Row 1 by 6


\left[\begin{array}{ccc}1&-(3)/(2)&|(1)/(2)\\3&-4&|7\end{array}\right]

Subtract 3 times Row 1 from Row 2


\left[\begin{array}{ccc}1&-(3)/(2)&|(1)/(2)\\0&(1)/(2)&|(11)/(2)\end{array}\right]

Divide Row 2 by
(1)/(2)


\left[\begin{array}{ccc}1&-(3)/(2)&|(1)/(2)\\0&1}&|11\end{array}\right]

Add
(3)/(2) times Row 2 to Row 1


\left[\begin{array}{ccc}1&0&|17\\0&1}&|11\end{array}\right]

Hence the solution is (17,11)

User Nikhil Aggarwal
by
4.5k points
5 votes

Answer:

Option A is correct (17,11).

Explanation:

6x - 9y = 3

3x - 4y =7

it can be represented in matrix form as
\left[\begin{array}{cc}6&-9\\3&4\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}3\\7\end{array}\right]

A=
\left[\begin{array}{cc}6&-9\\3&4\end{array}\right]

X=
\left[\begin{array}{c}x\\y\end{array}\right]

B=
\left[\begin{array}{c}3\\7\end{array}\right]

i.e, AX=B

or X= A⁻¹ B

A⁻¹ = 1/|A| * Adj A

determinant of A = |A|= (6*-4) - (-9*3)

= (-24)-(-27)

= (-24) + 27 = 3

so, |A| = 3

Adj A=
\left[\begin{array}{cc}-4&9\\-3&6\end{array}\right]

A⁻¹ =
\left[\begin{array}{cc}-4&9\\-3&6\end{array}\right]/3

A⁻¹ =
\left[\begin{array}{cc}-4/3&3\\-1&2\end{array}\right]

X= A⁻¹ B

X=
\left[\begin{array}{cc}-4/3&3\\-1&2\end{array}\right] *\left[\begin{array}{c}3\\7\end{array}\right]

X=
\left[\begin{array}{c}(-4/3*3) + (3*7)\\(-1*3) + (2*7)\end{array}\right]

X=
\left[\begin{array}{c}-4+21\\-3+14\end{array}\right]

X=
\left[\begin{array}{c}17\\11\end{array}\right]

x= 17, y= 11

solution set= (17,11).

User Samrockon
by
4.6k points