Answer:
Option A is correct (17,11).
Explanation:
6x - 9y = 3
3x - 4y =7
it can be represented in matrix form as
![\left[\begin{array}{cc}6&-9\\3&4\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}3\\7\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/m5654t2t5gxajbep0w1zbro139nmqpm034.png)
A=
X=
![\left[\begin{array}{c}x\\y\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/40i2f8o2ljb72yzopjlu4sdekju5m4wvuj.png)
B=
![\left[\begin{array}{c}3\\7\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/ohoptzglcldmkglfsfdvdokc4h5lw5bbm0.png)
i.e, AX=B
or X= A⁻¹ B
A⁻¹ = 1/|A| * Adj A
determinant of A = |A|= (6*-4) - (-9*3)
= (-24)-(-27)
= (-24) + 27 = 3
so, |A| = 3
Adj A=
A⁻¹ =
/3
A⁻¹ =
![\left[\begin{array}{cc}-4/3&3\\-1&2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/pdygir9j8u6d0si4pzd11dwpv7umw9qyby.png)
X= A⁻¹ B
X=
![\left[\begin{array}{cc}-4/3&3\\-1&2\end{array}\right] *\left[\begin{array}{c}3\\7\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/a9j9b0thd8eu1j8s2pmmiew141ki6go3pe.png)
X=
![\left[\begin{array}{c}(-4/3*3) + (3*7)\\(-1*3) + (2*7)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/ov41ek180cy92cwaem5abnosuu961ku551.png)
X=
![\left[\begin{array}{c}-4+21\\-3+14\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/zhro6eh3lvb793avjjj6yxuvg5x06e1suv.png)
X=
![\left[\begin{array}{c}17\\11\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/ht17az2blu47cj8yxxmoed9fcxtzs1234d.png)
x= 17, y= 11
solution set= (17,11).