Answer:
Option b is correct (8,13).
Explanation:
7x - 4y = 4
10x - 6y =2
it can be represented in matrix form as
![\left[\begin{array}{cc}7&-4\\10&-6\end{array}\right] \left[\begin{array}{c}x\\y\end{array}\right] = \left[\begin{array}{c}4\\2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/83w1svc33b4gyw56ad7c0561r06g11ecnk.png)
A=
X=
![\left[\begin{array}{c}x\\y\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/40i2f8o2ljb72yzopjlu4sdekju5m4wvuj.png)
B=
![\left[\begin{array}{c}4\\2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/4orrau9poiludzrcvzeoqlm3x8e7b6ih2o.png)
i.e, AX=B
or X= A⁻¹ B
A⁻¹ = 1/|A| * Adj A
determinant of A = |A|= (7*-6) - (-4*10)
= (-42)-(-40)
= (-42) + 40 = -2
so, |A| = -2
Adj A=
A⁻¹ =
/ -2
A⁻¹ =
![\left[\begin{array}{cc}3&-2\\5&-7/2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/kg6j0j8n1csyoucagmk8zipt57sdeqd3h5.png)
X= A⁻¹ B
X=
![\left[\begin{array}{cc}3&-2\\5&-7/2\end{array}\right] *\left[\begin{array}{c}4\\2\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/h8sehdmt87wb2swzxs7g98igwe6tgz6rt1.png)
X=
![\left[\begin{array}{c}(3*4) + (-2*2)\\(5*4) + (-7/2*2)\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/g9wuoknq8vi25t1b0psz0y56nnuysi8exj.png)
X=
![\left[\begin{array}{c}12-4\\20-7\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/bc51qmx1n2jbuo16390wps1tujm137m2na.png)
X=
![\left[\begin{array}{c}8\\13\end{array}\right]](https://img.qammunity.org/2020/formulas/mathematics/high-school/9muojysdjzo3wup5qdobinctma3gims5ro.png)
x= 8, y= 13
solution set= (8,13).
Option b is correct.