Answer:
Exponential Function:
![A= P* e ^ {0.061t}](https://img.qammunity.org/2020/formulas/mathematics/high-school/r6h4fj8buashcangkxwcihctgr7nf3fnbn.png)
Balance after
t=1 $ 13,524.32
t=2 $ 14,374.99
t=5 $ 17,261.69
t=10 $ 23,417.64
Explanation:
Formula used to find amount in the account after time t, given the interest rate is compounded continuously
![A= Pe^r^t](https://img.qammunity.org/2020/formulas/mathematics/high-school/98pqwqk3lu5keh5czs0idji4pu18etcmuz.png)
where: P= principal amount or amount invested
r= interest rate
t= time
A= amount after time t
in our question we are given:
P=$12,724
r= 6.1% or 0.061
![A= 12724 * e ^ (^0^.^0^6^1^)^t](https://img.qammunity.org/2020/formulas/mathematics/high-school/3n49ylvqz1z4rfpt4h2p88ulfd6yw44y8u.png)
The above equation is exponential function that describes the amount in the account after time t in years
Now, for t = 1
![A= 12724 * e ^ {0.061 * 1}](https://img.qammunity.org/2020/formulas/mathematics/high-school/d6aedtd71l68z6oubm6e2ksof9vlek63md.png)
A= $ 13,524.32
t=2
![A= 12724 * e ^ {0.061 * 2}](https://img.qammunity.org/2020/formulas/mathematics/high-school/x4s9neujq79f2aib52st94t2s4r7hg5gma.png)
A= $ 14,374.99
t= 5
![A= 12724 * e ^ {0.061 * 5}](https://img.qammunity.org/2020/formulas/mathematics/high-school/yf7qskodi7pqbd4frrtcrsu6rz6aek5isc.png)
A= $ 17,261.69
t=10
![A= 12724 * e ^ {0.061 * 10}](https://img.qammunity.org/2020/formulas/mathematics/high-school/81xhrceunep3bym9kvh41uj5m9cljg094v.png)
A= $ 23,417.64