Answer:
The perimeter of one of the trapezoids is equal to
![(16+8√(2))\ in](https://img.qammunity.org/2020/formulas/mathematics/college/p1clzb9pzitz1ujl1jrs7rgs3yjc3u1wmd.png)
Explanation:
see the attached figure to better understand the problem
we know that
The perimeter of a square is
![P=4b](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7wa6ldnhizfqgnpwa393kjltnuv5qqfec.png)
where
b is the length side of the square
step 1
Find the length side of the smaller square
![16=4b](https://img.qammunity.org/2020/formulas/mathematics/college/ypmb7yv9smstdrn7glr8fe1lsr23i60yq5.png)
![b=16/4=4\ in](https://img.qammunity.org/2020/formulas/mathematics/college/oygxgxuibykphzmzszbdt17ei35ophqf55.png)
step 2
Find the length side of the large square
![48=4b](https://img.qammunity.org/2020/formulas/mathematics/college/8p3pctxznevqkwtr9p350nohlq4geqk5dj.png)
![b=48/4=12\ in](https://img.qammunity.org/2020/formulas/mathematics/college/yt268q0vxw8x6bfjm22elfoxw2oonozv4s.png)
step 3
Find the height of one trapezoid
The height is equal to
![h=(12-4)/2=4\ in](https://img.qammunity.org/2020/formulas/mathematics/college/o961qtxq284ud0z5jpowvpp13fszhlz03v.png)
step 4
Remember that in this problem, one trapezoid is equal to one square plus two isosceles right triangles.
Find the hypotenuse of one isosceles right triangle
Applying Pythagoras Theorem
![c^(2)=4^(2) +4^(2) \\ \\c=4√(2)\ in](https://img.qammunity.org/2020/formulas/mathematics/college/4k9v061jt2uo9vslrwgc9witdrivu61zv6.png)
step 5
Find the perimeter of one of the trapezoid
The perimeter is equal to
![P=(4√(2) +4+4√(2)+12)\\ \\P=(16+8√(2))\ in](https://img.qammunity.org/2020/formulas/mathematics/college/oihrl0c2xt82va2chxdyj9m316jibhldrx.png)