Answer:
f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 4 meters from the ground
Explanation:
The function is a quadratic where t is time and f(t) is the height from the ground in meters. You can write the function f(t) = 4t2 − 8t + 8 in vertex form by completing the square. Complete the square by removing a GCF from 4t2 - 8t. Take the middle term and divide it in two. Add its square. Remember to subtract the square as well to maintain equality.
f(t) = 4t2 − 8t + 8
f(t) = 4(t2 - 2t) + 8 The middle term is -2t
f(t) = 4(t2 - 2t + 1) + 8 - 4 -2t/2 = -1; -1^2 = 1
f(t) = 4(t-1)^2 + 4 Add 1 and subtract 4 since 4*1 = 4.
The vertex (1,4) means at a minimum the roller coaster is 4 meters from the ground.
- f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 2 meters from the ground
- f(t) = 4(t − 1)2 + 2; the minimum height of the roller coaster is 4 meters from the ground
- f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 1 meter from the ground
- f(t) = 4(t − 1)2 + 4; the minimum height of the roller coaster is 4 meters from the ground