Hello!
The answers are:
The possible values for x in the equation, are:
First option,
![5\sqrt[3]{3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/onew38jd7cbljf58jfqs5xqmm3yxakrofo.png)
Second option,
![\sqrt[3]{375}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4ufgs115ang88ifo3vae4mac8e9xab5wpx.png)
Why?
To solve the problem, we need to remember the following properties of the exponents and roots:
![a\sqrt[n]{b}=\sqrt[n]{a^(n)*b} \\\\\sqrt[n]{a^(m) }=a^{(m)/(n)}\\\\(a^(b))^(c)=a^(b*c)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vl2it8avajn3lp6ye1pdsnsavyhhrlh49q.png)
Then, we are given the expression:
![x^(3)=375](https://img.qammunity.org/2020/formulas/mathematics/middle-school/lt81zv429fjtb96rbv52681tbi2ke0m77h.png)
So, finding "x", we have:
![x^(3)=375\\\\(x^(3))^{(1)/(3) } =(375)^{(1)/(3)}\\\\x=\sqrt[3]{375}=\sqrt[3]{125*3}=\sqrt[3]{125}*\sqrt[3]{3}=5\sqrt[3]{3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wt3pv3oamshqqvztfos3bjmxb5v5plps24.png)
Hence, the possible values for x in the equation, are:
First option,
![5\sqrt[3]{3}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/onew38jd7cbljf58jfqs5xqmm3yxakrofo.png)
Second option,
![\sqrt[3]{375}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4ufgs115ang88ifo3vae4mac8e9xab5wpx.png)
Have a nice day!