Answer:
The quadrilateral is rotated 180° about the origin
Explanation:
Lets revise some transformation
- If point (x , y) reflected across the x-axis
∴ Its image is (x , -y)
- If point (x , y) reflected across the y-axis
∴ Its image is (-x , y)
- If point (x , y) reflected across the line y = x
∴ Its image is (y , x)
- If point (x , y) reflected across the line y = -x
∴ Its image is (-y , -x)
- If point (x , y) rotated about the origin by angle 90° anti-clock wise
∴ Its image is (-y , x)
- If point (x , y) rotated about the origin by angle 90° clock wise
∴ Its image is (y , -x)
- If point (x , y) rotated about the origin by angle 180°
∴ Its image is (-x , -y)
* There is no difference between rotating 180° clockwise or
anti-clockwise around the origin
* In our problem:
- The sign of the x-coordinate and the sign of the y- coordinate
for each ordered pair have changed
- The image of each point is (-5 , -8) , (-7 , -10) , (-9 , -12) , (-11 , -14)
∴ The quadrilateral is rotated 180° about the origin