Answer: option B
Explanation:
Given the quadratic equation
, you can use the formula to find the x-coordinate of the vertex of the parabola:
![x=(-b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/h04sw6r4c6bv9gj7zipt5c1gmb3qbez2n6.png)
Simplify the quadratic equation. Remember that:
![(a-b)^2=a^2-2ab+b^2](https://img.qammunity.org/2020/formulas/mathematics/college/70ipl711irngjhsq8valwop0eu98ltnm9z.png)
Then:
![y=-1(x-4)^2+9\\y=-1(x^2-2(x)(4)+4^2)+9\\y=-x^2+8x-16+9\\y=-x^2+8x-7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ph7yp8tt4fwojg0hvkb2sfv2gdao99kvon.png)
Substituting:
![x=(-8)/(2(-1))=4](https://img.qammunity.org/2020/formulas/mathematics/middle-school/htk1zrftq4zlh2jc3oyi4y35z6ex2rs64o.png)
The y-coordinate is:
![y=-(4)^2+8(4)-7=9](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5scc8vp7or1gi2hgal9da8ild86a5qd793.png)
The vertex is at (4,9) therefore it is a maximum.