Answer:
x = 1.91
Explanation:
* We have exponential equation to solve it lets study some rules
- If a^m = a^n ⇒ then m = n
- If a^m = b^m ⇒ then a = b or m = 0
- If a^m = b^n ⇒ log(a^m) = log(b^n) ⇒ m log(a) = n log(b)
* You can use log or ln
* Lets solve the problem
∵
⇒ insert log to both sides
∴
![log(4^(2x-5))=log(6^(-x+1))](https://img.qammunity.org/2020/formulas/mathematics/high-school/wmsbdqwzyb21t1xcpzqdphg39jxnox9jwa.png)
-
![log(a^(m))=mlog(a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/l38ccrkq723ey5cz1wrn5hv22p8ckfy3fp.png)
∴ (2x - 5)log(4) = (-x + 1)log(6) ⇒ open the brackets
∴ 2xlog(4) - 5log(4) = -xlog(6) + log(6) ⇒ collect x in one side
∴ 2xlog(4) + xlog(6) = log(6) + 5log(4) ⇒ take x as a common factor
∴ x(2log(4) + log(6)) = log(6) + 5log(4)
- divide both sides by coefficient of x
![x=(log(6)+5log(4))/(2log(4)+log(6))=1.91](https://img.qammunity.org/2020/formulas/mathematics/high-school/4cr5988tyov4wd7gdzrobvly0o7m5n9ud1.png)
∴ x = 1.91