Answer:
The shaded are is
![113\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ppwom80ar384az5v902v9ajx39y35ylrr7.png)
Explanation:
we know that
The shaded area is equal to the area of the semicircle minus the area of the circle inside the semicircle
step 1
Find the area of semicircle
The area of semicircle is equal to
![A=(1)/(2)\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/kc0drwcee0x7tzxjzifzwy13kvhbtdxe0k.png)
where
----> the radius is half the diameter
substitute
![A=(1)/(2)\pi(12)^(2)=72\pi\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c75g3yq0egph8xvl9h98oenqe7bxcml3ll.png)
step 2
Find the area of the circle inside the semicircle
The area of circle is equal to
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
where
---> the radius of circle inside is half the radius of semicircle
substitute
![A=\pi(6)^(2)=36\pi\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/v66j5s8crw8zpao5501b4yhvq4iq8zkl1g.png)
step 3
Find the shaded area
![72\pi\ mm^(2)-36\pi\ mm^(2)=36\pi\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vt7hcwm1fqhpjkigfri1ijkq78pti3t2zd.png)
assume
![\pi=3.14](https://img.qammunity.org/2020/formulas/mathematics/middle-school/elnllul6m5wik5ibdc7x3b8auxqsmgjtbn.png)
![36(3.14)=113.04\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kgka2x30qq3e2vsemjplxupnq0cqkqjujs.png)
3 significant figures is
![113\ mm^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ppwom80ar384az5v902v9ajx39y35ylrr7.png)