The exact value of cos(α-β) is found using trigonometric identities. Calculating cos(α) and sin(β), the result is -480/481, showcasing precise calculations in trigonometry.
To find the exact value of cos(α-β), we first need to calculate cos(α) and sin(β) using the given information.
1. Calculate cos(α):
- cos(α) = -√(1 - sin²(α))
- cos(α) = -√(1 - (35/37)²)
- cos(α) = -√(1 - 1225/1369)
- cos(α) = -√(144/1369)
- cos(α) = -12/37
2. Calculate sin(β):
- sin(β) = -√(1 - cos²(β))
- sin(β) = -√(1 - (5/13)²)
- sin(β) = -√(1 - 25/169)
- sin(β) = -√(144/169)
- sin(β) = -12/13
Now that we have cos(α) and sin(β), we can use the angle difference identity:
cos(α-β) = cos(α)cos(β) + sin(α)sin(β)
Substituting the values:
cos(α-β) = (-12/37)(5/13) + (35/37)(-12/13)
cos(α-β) = -60/481 - 420/481
cos(α-β) = -480/481
Therefore, the exact value of cos(α-β) is -480/481.