Answer:
![63.7\%](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6de4fqhfgr5q0enuw06uq8bq4mwkg9v6u.png)
Explanation:
we know that
To find the percent divide the area of the square by the area of the circle
step 1
Find the area of the circle
The area of the circle is
![A=\pi r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2z11w6ajg8k9itft7shcdqinea4lmf008k.png)
we have
![r=1\ in](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kwutyt7iyxa1qlshhd3ww5ji8y3y0rpnpq.png)
substitute the values
![A=(3.14)(1)^(2)=3.14\ in^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/t9t3897zea7nskmi566j1nknb9q7xvsnkg.png)
step 2
Find the area of the square
The area of the square is
![A=b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/z7z681nqfs0ruu0905ybb033ebqg24se8n.png)
where
b is the length side of the square
we have
---> the diagonal of the square is equal to the diameter of the circle
Applying Pythagoras Theorem
![D^(2)=b^(2)+b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/y9h4u23ykr7rpe2k2y7z0lrsuy13lnpat8.png)
substitute the values
![2^(2)=2b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w9rfmphzgobwr9mb9ff7dl90bh4xhnn9ez.png)
![4=2b^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/sn6k6ev0g2pipwo8kfqw8pxjwgzevog69b.png)
------> the area of the square
step 3
Find the percent
![(2)/(3.14)= 0.6369](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nzep8ds6mv46rod82z8d1p7fwkjqx2l7pu.png)
Convert to percent
![0.6369*100=63.69\%](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g5e3zi3xdn62dsod0y8j5od4u8dl8wt5lb.png)
Round to the nearest tenth of a percent
![63.7\%](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f6de4fqhfgr5q0enuw06uq8bq4mwkg9v6u.png)