204k views
3 votes
How long is the edge of a cube whose volume is twice that of the cube below? Round to the nearest tenth.

How long is the edge of a cube whose volume is twice that of the cube below? Round-example-1
User TheBrent
by
5.8k points

1 Answer

5 votes

Answer:


\large\boxed{10.1\ cm}

Explanation:

The formula of a volume of a cube:


V=a^2

a - length of the edge

We have a = 8cm. Substitute:


V=8^3=512\ cm^3

The volume of second cube:


V'=2V\to V'=2(512\ cm^3)=1024\ cm^3

The length of the edge of the second cube (b):


b^3=1024\to b=\sqrt[3]{1024}\ cm^3


1024=2^(10)=2^(9+1)=2^9\cdot2

Used
a^n\cdot a^m=a^(n+m)


b=\sqrt[3]{1024}=\sqrt[3]{2^(10)}=\sqrt[3]{2^9\cdot2}=\sqrt[3]{2^9}\cdot\sqrt[3]{2}

Use
(a^n)^m=a^(nm)


=\sqrt[3]{2^(3\cdot3)}\cdot\sqrt[3]{2}=\sqrt[3]{(2^3)^3}\cdot\sqrt[3]{2}

Use
\sqrt[3]{a^3}=a


=2^3\sqrt[3]{2}=8\sqrt[3]{2}\ cm


\sqrt[3]{2}\approx1.26\to b\approx8(1.26)\approx10.1\ cm

Other method:


V'=2V\\\\V=a^3,\ V'=b^3\to b^3=2a^3\to b=\sqrt[3]{2a^3}\\\\b=a\sqrt[3]2


a=8\ cm\to b=8\sqrt[3]2\ cm\approx10.1\ cm

User Kristian Heitkamp
by
6.1k points