291,615 views
9 votes
9 votes
(Refer to the attached image)​

(Refer to the attached image)​-example-1
User Kwesi
by
2.6k points

2 Answers

12 votes
12 votes

Formula given by


\boxed{\sf Distance=√((x_2-x_1)^2+(y_2-y_1)^2)}


\\ \tt{:}\longrightarrow D=√((-4-4)^2+(3+3)^2)


\\ \tt{:}\longrightarrow D=√(8^2+6^2)


\\ \tt{:}\longrightarrow D=√(10^2)


\\ \tt{:}\longrightarrow D=10units

Option D

User Moriah
by
2.6k points
25 votes
25 votes

Answer:

D. 10

Explanation:

To find the distance between two points, use the distance formula:

Distance between two points


d=√((x_2-x_1)^2+(y_2-y_1)^2)


\textsf{where }(x_1,y_1) \textsf{ and }(x_2,y_2)\:\textsf{are the two points}

Define the two points:


\textsf{Let }(x_1,y_1)=(4,-3)


\textsf{Let }(x_2,y_2)=(-4,3)

Substitute the two defined points into the distance formula and solve for d:


\implies d=√((-4-4)^2+(3-(-3))^2)


\implies d=√((-4-4)^2+(3+3)^2)


\implies d=√((-8)^2+6^2)


\implies d=√(64+36)


\implies d=√(100)


\implies d=√(10^2)


\implies d=10

Therefore, the distance between the two given points is 10 units.

User Coleifer
by
3.0k points