Answer:
The height is
![8.7\ cm](https://img.qammunity.org/2020/formulas/mathematics/middle-school/8jdjgcternnubmwgp3px83kn8m31omfh8v.png)
Explanation:
step 1
Find the diagonal of the base
Applying the Pythagoras Theorem
![d^(2)=18^(2)+15^(2)\\ \\d^(2)=549\\ \\ d=√(549)\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/hbuaq27bqt3byjv79gqnjv3qhm7hzzdbxw.png)
step 2
Find the height of the prism
we know that
The diagonal of the rectangular prism is equal to
![D^(2)=d^(2)+h^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/m2abbbkb2ul3pt63inwwg0wk96vl5xulxk.png)
where
D is the diagonal of the rectangular prism
h is the height of the prism
d is the diagonal of the base of the rectangular prism
we have
![d=√(549)\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/ljz2q343l3muctfxqa2io29haegq0m23xy.png)
![D=25\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/k0m6xj2qg5i2lrttxpm2jwkylu3zbe4cba.png)
substitute and solve for h
![25^(2)=(√(549))^(2)+h^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/x1yy2idg5w66fs4nvu2z4y80uhb7d2etqc.png)
![h^(2)=625-549](https://img.qammunity.org/2020/formulas/mathematics/high-school/5bpsymedjsc4fhr4dk83a2wtqokzw2687r.png)
![h^(2)=76](https://img.qammunity.org/2020/formulas/mathematics/high-school/547dbb93x9mwwtpla504efdw1prkqzcmi1.png)
![h=8.7\ cm](https://img.qammunity.org/2020/formulas/mathematics/high-school/ecndv219dy69ybr1yb9o9ikath0dkgz0d8.png)