99.7k views
1 vote
Find the difference (5a^2+4ab-3b^2)-(-5ab+4b^2+3a^2)

User Jobalisk
by
5.6k points

2 Answers

6 votes

Answer:


\boxed{\bold{2a^2+9ab-7b^2}}

Step By Step Explanation:

Remove Parenthesis: (a) = a


\bold{5a^2+4ab-3b^2-\left(-5ab+4b^2+3a^2\right)}

Simplify
\bold{-\left(-5ab+4b^2+3a^2\right)}


\bold{5ab-4b^2-3a^2}

Rewrite Equation:


\bold{5a^2+4ab-3b^2+5ab-4b^2-3a^2}

Simplify
\bold{5a^2+4ab-3b^2+5ab-4b^2-3a^2}


\bold{2a^2+9ab-7b^2}

- Mordancy

User Fawaz
by
5.8k points
5 votes

Answer:
2a^2+9ab-7b^2

Explanation:

The differenece is obtained by subtracting the polynomial
(5a^2+4ab-3b^2) and the polynomial
(-5ab+4b^2+3a^2).

Remember that:


(-)(-)=+\\(+)(+)=+\\(-)(+)=-

Then, you need to Distribute the negative sign:


(5a^2+4ab-3b^2)-(-5ab+4b^2+3a^2)= 5a^2+4ab-3b^2+5ab-4b^2-3a^2

Now, you need to add the like terms. Then you get that the difference is:


=2a^2+9ab-7b^2

User MrSynAckSter
by
5.3k points