Hello!
The answer is:
The equation of the given circle is:
![(x+2)^(2) +(y)^(2)=64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mtq6pv6k967sga4f0sikvbrm019712j9vm.png)
Why?
The equation of a circle is given by the following equation:
![(x-h)^(2) +(y-k)^(2)=r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5csspae574i3d2aro6r7910c83fhu8k2ng.png)
We are given the center point (-2,0) and the area of the circle.
The area of a circle is given by the formula:
![A=\pi*r^(2)\\64\pi=\pi*r^(2)\\64=r^(2)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qnsithhjek9vr7d4dln6ansj9wepq82oyr.png)
![A=\pi*r^(2)\\64\pi=\pi*r^(2)\\64=r^(2)\\√(64)=r\\8=r\\r=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3uou4fdedz6t4059jtk0kmtt3grqnhh9uu.png)
So, the radius of the circle is 8 units.
Therefore,
We are given a circle where:
![h=x=-2\\k=y=0\\r=8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/c7utf76xghv8cim8uh5onby52s5aerdm7w.png)
Then, substituting into the circle equation, we have:
![(x-(-2))^(2) +(y-0)^(2)=(8)^](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h268wqt47og6m7anzohii9ayd83n9bprt9.png)
![(x+2)^(2) +(y)^(2)=64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mtq6pv6k967sga4f0sikvbrm019712j9vm.png)
Hence, the simplified equation of the circle is:
![(x+2)^(2) +(y)^(2)=64](https://img.qammunity.org/2020/formulas/mathematics/middle-school/mtq6pv6k967sga4f0sikvbrm019712j9vm.png)
Have a nice day!