157k views
1 vote
Evaluate the line integral, where C is the given curve. C sin(x) dx + cos(y) dy, where C consists of the top half of the circle x2 + y2 = 16 from (4, 0) to (−4, 0) and the line segment from (−4, 0) to (−5, 4)

User Fabien Sa
by
5.1k points

1 Answer

4 votes

Parameterize the circular part of
C (call it
C_1) by


x=4\cos t


y=4\sin t

wih
0\le t\le\pi, and the linear part (call it
C_2) by


x=-4-t


y=4t

with
0\le t\le1.

Then


\displaystyle\int_C\sin x\,\mathrm dx+\cos y\,\mathrm dy=\left\{\int_(C_1)+\int_(C_2)\right\}\sin x\,\mathrm dx+\cos y\,\mathrm dy


=\displaystyle\int_0^\pi(-4\sin t\sin(4\cos t)+4\cos t\cos(4\sin t))\,\mathrm dt+\int_0^1(-\sin(-4-t)+\cos4t)\,\mathrm dt


=0+\displaystyle\int_0^1(\sin(t+4)+\cos4t)\,\mathrm dt


=\cos4-\cos5+\frac{\sin4}4

User DanielQ
by
5.7k points