40.0k views
1 vote
Express the complex number in trigonometric form.

-6 + 6 
√(3) i

User Lbrutti
by
7.8k points

1 Answer

1 vote

Answer:


\large\boxed{-6+6\sqrt3i=12\left(\cos(2\pi)/(3)+i\sin(2\pi)/(3)\right)}

Explanation:

Look at the picture.

The trigonometric form of a complex number:


z=|z|(\cos\alpha+i\sin\alpha)

where:


|z|=√(a^2+b^2)\\\\\cos\alpha=(a)/(|z|)\\\\\sin\alpha=(b)/(|z|)

We have the complex number:


z=-6+6\sqrt3i\to a=-6,\ b=6\sqrt6

Substitute:


|z|=√((-6)^2+(6\sqrt3)^2)=√(36+108)=√(144)=12


\cos\alpha=(-6)/(12)=-(1)/(2)\\\\\sin\alpha=(6\sqrt3)/(12)=(\sqrt3)/(2)

Therefore


\alpha=(2\pi)/(3)

Finally:


-6+6\sqrt3i=12\left(\cos(2\pi)/(3)+i\sin(2\pi)/(3)\right)

Express the complex number in trigonometric form. -6 + 6 √(3) i-example-1
User MinuMaster
by
7.8k points

No related questions found