40.0k views
1 vote
Express the complex number in trigonometric form.

-6 + 6 
√(3) i

User Lbrutti
by
7.8k points

1 Answer

1 vote

Answer:


\large\boxed{-6+6\sqrt3i=12\left(\cos(2\pi)/(3)+i\sin(2\pi)/(3)\right)}

Explanation:

Look at the picture.

The trigonometric form of a complex number:


z=|z|(\cos\alpha+i\sin\alpha)

where:


|z|=√(a^2+b^2)\\\\\cos\alpha=(a)/(|z|)\\\\\sin\alpha=(b)/(|z|)

We have the complex number:


z=-6+6\sqrt3i\to a=-6,\ b=6\sqrt6

Substitute:


|z|=√((-6)^2+(6\sqrt3)^2)=√(36+108)=√(144)=12


\cos\alpha=(-6)/(12)=-(1)/(2)\\\\\sin\alpha=(6\sqrt3)/(12)=(\sqrt3)/(2)

Therefore


\alpha=(2\pi)/(3)

Finally:


-6+6\sqrt3i=12\left(\cos(2\pi)/(3)+i\sin(2\pi)/(3)\right)

Express the complex number in trigonometric form. -6 + 6 √(3) i-example-1
User MinuMaster
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories