ANSWER
![a = (5)/(16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v90fujvxongqytd37cguf09dy4309i6nhh.png)
Step-by-step explanation
We want to find the value of a for which the binomial, 2a-1 is smaller than the value of the binomial 7-1.2a by 7.
This means that, when we subtract 2a-1 from 7-1.2a, we should get 7.
![7 - 1.2a - (2a - 1) = 7](https://img.qammunity.org/2020/formulas/mathematics/high-school/kmcpl72o8hqnzi09rgzo0c9ldneb716g5d.png)
Expand:
![7 - 1.2a - 2a + 1= 7](https://img.qammunity.org/2020/formulas/mathematics/high-school/puy1mv39dkv1gcvhbyt7vhwofn4nmp6pf4.png)
Group similar terms:
![- 1.2a - 2a = 7 - 7 - 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/8hcla1e7pwn6xcyowrqskkob6ej04xkuot.png)
![- 3.2a = - 1](https://img.qammunity.org/2020/formulas/mathematics/high-school/g8vnkwo3op0s3jj32m1bqr1qelrrwpj0nx.png)
Divide both sides by -3.2,
![a = ( - 1)/( - 3.2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/jvosiyagjwhir6gzls77ylnm66sg6622v8.png)
![a = (5)/(16)](https://img.qammunity.org/2020/formulas/mathematics/high-school/v90fujvxongqytd37cguf09dy4309i6nhh.png)