159k views
21 votes
Find all the zeros for the following function y=x2 - 6x +16x-96 The zeros are​

Find all the zeros for the following function y=x2 - 6x +16x-96 The zeros are​-example-1
User Cross
by
4.9k points

1 Answer

12 votes

Answer:

The zeros for the function


x=6,\:x=4i,\:x=-4i

Explanation:

Given the expression


y=x^3-6x^2+16x-96

Plug in y = 0 to determine all the zeros


x^3-6x^2+16x-96=0

as


x^3-6x^2+16x-96=\left(x-6\right)\left(x^2+16\right)

so the expression becomes


\left(x-6\right)\left(x^2+16\right)=0

Using the zero factor principle

if ab=0, then a=0 or b=0 (or both a=0 and b=0)


x-6=0\quad \mathrm{or}\quad \:x^2+16=0

solving


x-6=0


x = 6

solving


x^2+16=0

subtract 16 from both sides


x^2+16-16=0-16


x^2=-16


\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))


x=√(-16),\:x=-√(-16)

as


x=√(-16)


√(-16)=√(-1)√(16)

as


√(-1)=i

so


x=4i

and


x=-√(-16)


-√(-16)=-√(-1)√(16)

as


√(-1)=i

so


x=-4i

Thus, the zeros for the function


x=6,\:x=4i,\:x=-4i

User AlfaZulu
by
5.1k points