Answer:
The zeros for the function
![x=6,\:x=4i,\:x=-4i](https://img.qammunity.org/2022/formulas/mathematics/high-school/s2ptwjljgefux9f1e6z05vao4derhxbfak.png)
Explanation:
Given the expression
![y=x^3-6x^2+16x-96](https://img.qammunity.org/2022/formulas/mathematics/high-school/6a13p5zndrjz8ujb1oin89qk6jwr7i3onu.png)
Plug in y = 0 to determine all the zeros
![x^3-6x^2+16x-96=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/8o4atj8eiiy0jz0vfj7oew9kf4foh7er1k.png)
as
![x^3-6x^2+16x-96=\left(x-6\right)\left(x^2+16\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/29fff6us40ymdncrp9g86jvrfopntxbhro.png)
so the expression becomes
![\left(x-6\right)\left(x^2+16\right)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/l56hlxfu1g2i955hko6bzkx9njgzor9pfn.png)
Using the zero factor principle
if ab=0, then a=0 or b=0 (or both a=0 and b=0)
![x-6=0\quad \mathrm{or}\quad \:x^2+16=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/67t47ysm5qlzolns22mj4zz5293cfx5gu6.png)
solving
![x-6=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/lixf42o8fai5xdczloil7gdq2o7ec0ak1j.png)
![x = 6](https://img.qammunity.org/2022/formulas/mathematics/college/wv8bfuw9fk5nriahdjmvxfctqsjqi7024j.png)
solving
![x^2+16=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/bft59y1x3v9ny13gnza2cj6hugu0749hpf.png)
subtract 16 from both sides
![x^2+16-16=0-16](https://img.qammunity.org/2022/formulas/mathematics/high-school/5yt6elm3zz4obqng0gbxgfmy0u8mwhhoes.png)
![x^2=-16](https://img.qammunity.org/2022/formulas/mathematics/high-school/3cifsahq3eutxdp94ukbtp2hdthnc894og.png)
![\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))](https://img.qammunity.org/2022/formulas/mathematics/high-school/yb21e7ro84rw7ysnrfd1gavfwjoxjyov9h.png)
![x=√(-16),\:x=-√(-16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/722u5y0w67cv1b8ieodou8gqmlaaplop0g.png)
as
![x=√(-16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/eg4ubhx21wwezsdnd6j1yp6qmlx8j6lq4x.png)
![√(-16)=√(-1)√(16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/lz26m85p5z2yzblj7ufzxqu7yv1grncdn6.png)
as
![√(-1)=i](https://img.qammunity.org/2022/formulas/mathematics/high-school/c7vmad0wzrgox5lnx7kvo7emvb3hb715ks.png)
so
![x=4i](https://img.qammunity.org/2022/formulas/mathematics/high-school/zhauo40s8vo24nxyxyolrtsi84robrq3m7.png)
and
![x=-√(-16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xzvpt3j44qwx4dd4jhdbvsztlsy5mc5baj.png)
![-√(-16)=-√(-1)√(16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/54ddyqvenrnfkvtom032kjfd78e7wszqq0.png)
as
![√(-1)=i](https://img.qammunity.org/2022/formulas/mathematics/high-school/c7vmad0wzrgox5lnx7kvo7emvb3hb715ks.png)
so
![x=-4i](https://img.qammunity.org/2022/formulas/mathematics/high-school/dmn25mngzcisf94h21fqj738o9r48tq89v.png)
Thus, the zeros for the function
![x=6,\:x=4i,\:x=-4i](https://img.qammunity.org/2022/formulas/mathematics/high-school/s2ptwjljgefux9f1e6z05vao4derhxbfak.png)