Answer:
30 ft.
Explanation:
We have been given that Brian is 6 feet tall and cast a 4 foot shadow. At the same time, a nearby flag pole cast a 20 foot shadow. We are asked to find height of the pole.
We will use proportions to solve our given problem.
![\frac{\text{Height of pole}}{\text{Shadow of pole}}=\frac{\text{Brian's height}}{\text{Brian's shadow}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/s3xojjo2qa5a298k875ckdv6tbas8g30nv.png)
![\frac{\text{Height of pole}}{\text{20 ft}}=\frac{\text{6 ft}}{\text{4 ft}}](https://img.qammunity.org/2020/formulas/mathematics/high-school/87e144rwg03p1mmxu2efj3vseyc1vfqsvi.png)
![\frac{\text{Height of pole}}{\text{20 ft}}*\text{20 ft}=\frac{\text{6 ft}}{\text{4 ft}}*\text{20 ft}](https://img.qammunity.org/2020/formulas/mathematics/high-school/etulxdn876uk8pjmej36f3l5ipkr829hug.png)
![\text{Height of pole}=\frac{\text{6 ft}}{1}*5](https://img.qammunity.org/2020/formulas/mathematics/high-school/kt4g79ebv7dbky4423bd38myy88j7gxtad.png)
![\text{Height of pole}=\text{30 ft}](https://img.qammunity.org/2020/formulas/mathematics/high-school/m8gj3y34l0ugv1av32382anl5w7cr067nt.png)
Therefore, the pole is 30 ft high.