Answer:
![x^2-6x+10](https://img.qammunity.org/2020/formulas/mathematics/high-school/miaes9g7nscjc2uejixg8q1dlroe639sl8.png)
Explanation:
We know that the imaginary number i =
and thus
![i^2=√(-1) √(-1) =-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/5q3axqnrn3xuxa15m9lyoqt48bbwvtxl27.png)
If roots are given in the form (a+bi) and (a-bi), to find the quadratic, we can write it in the form:
(x - (a+bi) ) * (x - (a-bi))
and then multiply to figure out the answer. Shown below:
![(x-(3+i))(x-(3-i))\\=(x-3-i)(x-3+i)\\=x^2-3x+ix-3x+9-3i-ix+3i-i^2\\=x^2-6x+9-i^2\\=x^2-6x+9-(-1)\\=x^2-6x+9+1\\=x^2-6x+10](https://img.qammunity.org/2020/formulas/mathematics/high-school/6k5whz4593f8ejbe5hmjpifggw59a4w0lq.png)
Thus, the BLANK is -6x