150k views
0 votes
Show that the equation sin^2(x) + cos(x) + cos^2(x)-1/sec(x)=cos^2(x) is true

1 Answer

6 votes

Answer:

TRUE

Explanation:


(\sin^2(x)+\cos(x)+\cos^2(x)-1)/(\sec(x))=((\sin^2(x)+\cos^2(x))-1+\cos(x))/(\sec(x))\\\\\text{use}\ \sin^2x+\cos^2x=1\ \text{and}\ \sec x=(1)/(\cos x)\\\\=(1-1+\cos(x))/((1)/(\cos (x)))=(\cos(x))/((1)/(\cos(x)))=\cos(x)\cdot(\cos(x))/(1)=\cos^2(x)

User MeyerRJ
by
6.4k points