Answer:
Option 4. There's no hydrogen bonding between HBr molecules at all.
Step-by-step explanation:
SiH₄
SiH₄ molecules are tetrahedral and symmetric. Dipoles due to the polar Si-H bonds balance each other. SiH₄ molecules are nonpolar. Only instantaneous dipoles are possible between those molecules.
C₆H₆ Benzene
Similar to SiH₄, benzene is symmetric. Dipoles due to the weakly polar C-H bonds balance each other. Benzene molecules are nonpolar. Only instantaneous dipoles are possible between those molecules.
NH₃
There are two conditions for hydrogen bonding to take place:
- H atoms are directly bonded to a highly electronegative element: Nitrogen, Oxygen, or Fluorine.
- There is at least one lone pair of electrons nearby.
Consider the Lewis structure of NH₃. There are three H atoms in each NH₃ molecule. Each of the three H atoms is bonded directly to the N atom with a highly polar N-H bond. Also, there is a lone pair of electrons on the N atom. Hydrogen bonding will take place between NH₃ molecules.
NH₃ is a relatively small molecule. As a result, hydrogen bonding will be the dominant type of intermolecular force between NH₃ molecules.
HBr
There are three lone pairs on the Br atom in each HBr molecule. However, no H atom is connected to any one of the three highly electronegative elements: N, O, or F. The Br atom isn't electronegative enough for the H atom to form hydrogen bonding. HBr molecules are polar. As a result, the dominant type of intermolecular forces between HBr molecules will be dipole-dipole interactions (A.k.a. permanent dipole.)
CaO
Calcium is a group 2 metal. Oxygen is one of the three most electronegative nonmetal. (Again, the most electronegative elements are: Nitrogen, Oxygen, and Fluorine.) As a main group metal, Ca atoms tend to lose electrons and form positive ions. Oxygen will gain those electrons to form a negative ion. As a result, CaO will be an ionic compound full of Ca²⁺ and O²⁻ ions. Forces between ions with opposite charges are called ionic bonds.