163k views
1 vote
n simplest radical form, what are the solutions to the quadratic equation 6 = x2 – 10x? Quadratic formula: x = x = 5 x = 5 x = 5 x = 5

User Jeznag
by
4.9k points

2 Answers

7 votes

For this case we must find the solutions of the following quadratic equation:


6 = x ^ 2-10x\\x ^ 2-10x-6 = 0

Where:


a = 1\\b = -10\\c = -6

According to the quadratic equation we have:


x = \frac {-b \pm \sqrt {b ^ 2-4 (a) (c)}} {2 (a)}\\x = \frac {- (- 10) \pm \sqrt {(- 10) ^ 2-4 (1) (- 6)}} {2 (1)}\\x = \frac {10 \pm \sqrt {100 + 24}} {2}\\x = \frac {10 \pm \sqrt {124}} {2}


x = \frac {10 \pm \sqrt {124}} {2}\\x = \frac {10 \pm \sqrt {31 * 4}} {2}


x = \frac {10 \pm 2\sqrt {31}} {2}

So, we have two roots:


x_ {1} = 5 + \sqrt {31}\\x_ {2} = 5- \sqrt {31}

ANswer:


x_ {1} = 5 + \sqrt {31}\\x_ {2} = 5- \sqrt {31}

User ClareBear
by
5.1k points
3 votes

Answer:


x=5+√(31) or
x=5-√(31)

Explanation:

The given quadratic equation is


6=x^2-10x

Rewrite in the form;


ax^2+bx+c=0

This implies that;


x^2-10x-6=0

This gives us a=1,b=-10,c=-6

We use the quadratic formula;


x=(-b\pm√(b^2-4ac) )/(2a)

Plug in the values to get;


x=(--10\pm √((-10)^2-4(1)(-6)) )/(2(1))


x=(10\pm √(100+24) )/(2)


x=(10\pm √(124) )/(2)


x=(10\pm2√(31) )/(2)


x=5\pm√(31)


x=5+√(31) or
x=5-√(31)

User Rcsumner
by
4.6k points