Answer:
There is only one zero pair added i.e. 9.
Explanation:
Given : Function
![f(x)=x^2-6x+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/m9nom8ey84qd0xnb5zrlci2x9y9d4sgvot.png)
To find : How many zero pairs must be added to the function in order to begin writing the function in vertex form?
Solution :
Converting the given function into vertex form,
![f(x)=x^2-6x+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/m9nom8ey84qd0xnb5zrlci2x9y9d4sgvot.png)
Adding and subtracting square of 3,
![f(x)=x^2-6x+(3)^2-(3)^2+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/scxvq2kywowmiol6lp9rxqw9lo6llucylv.png)
Square form as
![a^2-2ab+b^2=(a-b)^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xqqw9f4peent08jozn1ixn86xb9tvte63t.png)
![f(x)=(x-3)^2-9+1](https://img.qammunity.org/2020/formulas/mathematics/high-school/s7zhdu0ulmxps55yfqoprv4nssz1ko1x3r.png)
![f(x)=(x-3)^2-8](https://img.qammunity.org/2020/formulas/mathematics/high-school/mxyhcdxjrhonbken6rng0ypp022adj618a.png)
So, The required vertex form is
![f(x)=(x-3)^2-8](https://img.qammunity.org/2020/formulas/mathematics/high-school/mxyhcdxjrhonbken6rng0ypp022adj618a.png)
There is only one zero pair added i.e. 9.