20.0k views
1 vote
Show work and explain with formulas.

Find the first four terms of the sequence if a_1 = 9, a_n = 5(a_n-1) - 7​

User Gambrinus
by
5.1k points

2 Answers

5 votes

Answer:


\large\boxed{a_1=9,\ a_2=38,\ a_3=183,\ a_4=908}

Explanation:

We have the sequence in recursive formula:


\left\{\begin{array}{ccc}a_1=99\\a_n=5(a_(n-1))-7\end{array}\right

Therefore


a_2=5a_(2-1)-7=5a_1-7\to a_2=5(9)-7=45-7=38\\\\a_3=5a_(3-1)-7=5a_2-7\to a_3=5(38)-7=190-7=183\\\\a_4=5a_(4-1)-7=5a_3-7\to a_4=5(183)-7=915-7=908

User Rothrock
by
4.7k points
3 votes

Answer:
\bold{a_1=9\qquad a_2=38\qquad a_3=183\qquad a_4=908}

Explanation:


a_1=9\qquad a_n=5(a_(n-1))-7\\\\a_2=5(a_1)-7\\.\quad =5(9)-7\\.\quad =45-7\\.\quad =\large\boxed{38}\\\\\\a_3=5(a_2)-7\\.\quad =5(38)-7\\.\quad =190-7\\.\quad =\large\boxed{183}\\\\\\a_4=5(a_3)-7\\.\quad =5(183)-7\\.\quad =915-7\\.\quad =\large\boxed{908}

User Hamid Habibi
by
4.5k points